ORGANOCATALYSIS

This research area involves the development of new organocatalytic processes for the synthesis of biologically relevant molecules. Organocatalysts are low-molecular-weight compounds whose catalytic activity resides in the molecule itself and not in the presence of metals. Organocatalysts are usually readily available, robust, inexpensive, and non-toxic. These major features provide operationally simple routes to useful compounds such as biologically active molecules without generating any wasteful by-products. From a mechanistic point of view, common ability of many organocatalysts is to mimic the catalytic activity and selectivity of metal-free enzymes. It can be envisaged that hydrogen bonding, electrostatic, and steric interactions stabilize the transition states of organocatalyzed reactions in a similar but simplified fashion if compared to enzyme catalysis, leading, however, to comparable levels of stereoselectivity.

GOALS

- Study of the parallelism organo/bio catalysis in the stereoselective formation of carbon-carbon bonds
- New processes promoted by *N*-heterocyclic carbenes.
- Development of supported organocatalysts.
- Mechanistic investigations.

INSTRUMENTS AND METHODS

Mass (MS) spectrometry and infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR). Elemental analysis. Chromatographic instruments.

MAIN SUBJECTS

Organic chemistry, biochemistry

RESEARCH GROUP

Olga Bortolini

Alessandro Massi

Marco Fogagnolo

Giancarlo Fantin

Pier Paolo Giovannini

Daniele Ragno

Carmela De Risi

COLLABORATIONS

Prof. D. Belder (University of Lipsia, Germany), Dr. P. Dambruoso (CNR-ISOF, Bologna), Prof. A. Mazzanti (University of Bologna)